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1 Reproducing Kernel Hilbert Spaces

Let X be a set and H a (complex) Hilbert space of functions defined on X, with
inner product 〈·, ·〉H such that the linear functionals `x : f → f(x) are bounded.
Such spaces are called reproducing kernel Hilbert space (or RKHS for short).
The reason for this terminology is that by Riesz’s representation Theorem there
exists kx ∈ H which represents `x, i.e.

f(x) = 〈f, kx〉H, ∀f ∈ H.

We can store all the information that kx contain in a single function of two
variables which we shall call reproducing kernel defined as follows

k(x, y) := ky(x), x, y ∈ X.

We shall further assume that the Hilbert function spaces that we work with
have the property that the kernel does not vanish on the diagonal.

Exercise 1.1. Prove that if k(x0, x0) = 0 then f(x0) = 0, ∀f ∈ H.

Lemma 1.1. Suppose that k is a reproducing kernel the following hold.

(i) k(x, y) = k(y, x), x, y ∈ X.

(ii) k is positive semidefinite.

These properties of a reproducing kernel characterize reproducing kernels
completely.

Exercise 1.2. Prove that if k : X × X → C with proeprties (i) and (ii) then
there exists a reproducing kernel Hibert space of functions on X which has as
reproducing kernel k.

Example 1.1. Let H2(D) be the Hardy space of analytic functions in the unit
disc, that is functions f which have a power series expansion

f(z) =

∞∑
n=0

anz
n, z ∈ D,
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with square summable coefficients. The Hardy space becomes a Hilbert space
endowed with the inner product

〈f, g〉 :=

∞∑
n=0

anbn,

where an, bn are the Taylor coefficients of f and g respectively. In fact the Hardy
space is a RKHS with reproducing kernel

S(ζ, η) =
1

1− ηζ
ζ, η ∈ D.

The letter “S” for the reproducing kernel of the Hardy space comes from Szegö
which is the name by which this kernel usually goes by.

2 Multipliers Space

For a given RKHS one can define the corresponding multiplier algebra, usually
denoted by M(H) as the set

{ϕ : X → C, ϕ · f ∈ H, ∀f ∈ H}.

For a given ϕ ∈M(H) an application of the closed graph theorem gives that
the operator

Mϕf := ϕf,

is a bounded linear operator on H. As a result there is a fundamental charac-
terization of the multipliers space in purely operator theoretic terms.

Theorem 2.1. Let T ∈ B(H) (a bounded linear operator on H). Then T is a
multiplication operator if and only if every kernel vector kx is an eigenvector of
T ∗.

Proof. Suppose that T = Mϕ for some ϕ ∈M(H). For any f ∈ H we have

〈M∗ϕkx, f〉H = 〈kx,Mϕf〉H
= 〈kx, ϕf〉H
= ϕ(x)f(x)

= ϕ(x)〈kx, f〉H
= 〈ϕ(x)kx, f〉H.

Hence,
M∗ϕkx = ϕ(x)kx. (1)

The converse statement follows by the same calculation and the fact that ∨{kx :
x ∈ X} = H.
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Corollary 2.1. For any ϕ ∈M(H),

sup
x∈X
|ϕ(x)| ≤ ‖Mϕ‖.

Next we shall introduce tensor multipliers. This is done not only for the
shake of generalizing the notion of a the multiplier space, but it turns out to be
the right way to formulate a fundamental property of many RKHS.

Let µ be a at most countable cardinal, i.e. µ = 1, 2, . . . ,ℵ0. we denote by `2µ
either the Hilbert space Cµ with the standard Hermitian inner product when µ
is finite, or `2(N) when µ = ℵ0. Then the tensor product H⊗ `2µ can be thought
of as the space of column vectors

F =

f1

f2

...

 , fi ∈ H, 1 ≤ i ≤ µ (2)

And norm given by

‖F‖2H⊗`2µ :=

µ∑
i=1

‖fi‖2H

We define now tensor multipliers as follows, for any cardinals µ, ν as before
the space of multipliersM(H⊗ `2µ,H⊗ `2ν) as functions Φ : X → B(`2µ, `

2
ν) such

that
X 3 x 7→ Φ(x)F (x)

is in H⊗ `2ν for all F ∈ H ⊗ `2µ.
A similar statement as equation (1) holds for tensor multipliers,

M∗Φ(kx ⊗ v) = kx ⊗ Φ∗(x)v, ∀x ∈ X, v ∈ `2µ. (3)

3 The Complete Nevanlinna Pick Property

The prototype for of all interpolation problems should probably be considered
the Pick’s interpolation problem. Suppose one is given z1, z2, . . . zN points in D
and w1, w2, . . . wN complex number. What is a necessary and sufficient condition
so that there exists ϕ ∈ H∞(D), a bounded analytic function of supremum norm
at most 1 such that

ϕ(zi) = wi, i = 1, . . . N?

Instead of resolving the problem by an ad hoc method we shall try to formu-
late a much more general problem. The fundamental connection is the following
observation left as an exercise.

Exercise 3.1. It holds M(H2(D)) = H∞(D) with equality of norms.
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Therefore Pick’s problem can be seen as a problem of interpolation by mul-
tipliers of a RKHS. In this light one can formulate a general version of Pick’s
problem.

Suppose H is a RKHS on X and we are given a finite sequence of points
x1, x2, . . . xN ∈ X and a bounded linear operators W1,W2, . . .WN ∈ B(`2µ, `

2
ν)

what is a necessary and sufficient condition such that there exists Φ ∈ M(H⊗
`2µ,H⊗ `2ν) of operator norm at most 1 which interpolates the data, i.e.,

Φ(xi) = Wi, i = 1, . . . N?

In this generality we can formulate a necessary condition

Theorem 3.1. Let H be a RKHS on X, let x1, x2, . . . xN ∈ X and let W1,W2, . . .WN ∈
B(`2µ, `

2
ν). A necessary condition to be able to solve the corresponding Pick’s in-

terpolation problem is that the B(`2ν)-operator valued matrix[
(Iν −WiW

∗
j )k(xi, xj)

]N
i,j=1

(4)

is positive semi-definite.

Proof. Suppose that such a Φ exists. As usual this is equivalent to

IH⊗`2ν −MΦM
∗
Φ ≥ 0

on H⊗ `2ν. In particular if v1, v2, . . . vN ∈ `2ν ,

0 ≤
〈

[IH⊗`2ν −MΦM
∗
Φ]
( N∑
i=1

kxi ⊗ vi
)
,

N∑
j=1

kxj ⊗ vj
)〉
H⊗`2ν

=

N∑
i,j=1

[
k(xj , xi)〈vi, vj〉`2ν −

〈
MΦ(kxi ⊗ Φ∗(xi)vi), kxj ⊗ vj

〉
H⊗`2ν

]

=

N∑
i,j=1

[
k(xj , xi)〈vi, vj〉`2ν −

〈
kxi ⊗ Φ∗(xi)vi, kxj ⊗ Φ∗(xj)vj

〉
H⊗`2ν

]

=

N∑
i,j=1

k(xj , xi)〈(I`2ν − Φ(xj)Φ
∗(xi))vi, vj)〉`2ν .

The previous condition is not always sufficient. But the cases when it is are
so important that they deserve a definition

Definition 3.1. We say that a RKHS H with reproducing kernel k has the
µ × ν Nevanlinna-Pick property if condition (4) is also sufficient to solve the
interpolating problem. If a kernel has the µ × ν Nevanlinna-Pick property we
say that it is a Complete Nevanlinna-Pick Kernel.
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Let us now present mostly without proofs three different situations which
are representative of the possible behaviours that one should expect.

Example 3.1 (The Paley Wiener Space). We say that an entire function f is
of exponential type A if there exists a positive constant C such that |f(z)| ≤
CeA|z|, z ∈ C. It can be shown that for such functions, if f |R ∈ L2(R), the
Fourier transform is supported on the interval [−π, π], hence we can define the
norm

‖f‖2PW 2
A

:=

∫ A

−A
|f̂(x)|2dx < +∞.

It can be shown that that the space PW 2
A is a RKHS. We usually work take

A = π. Then the reproducing kernel is given by

σπ(z, w) :=
sinπ(z − w)

π(z − w)
, z, w ∈ C.

By Corollary 2.1 if ϕ ∈ M(PW 2
π ), it must be a bounded entire function

therefore it should be constant. Therefore the Paley-Wiener spaces has only
trivial multipliers.

This in particular implies that the The Paley Wiener space does not have
the Pick Property.

Example 3.2 (The Bergman Space). The Bergman space A2(D) is the space
of analytic functions in the unit disc which are square integrable with respect to
the Lebesgue area measure dA = dxdy

π . Now let ϕ ∈ H∞(D) and f ∈ A2(D),∫
D
|ϕ(z)f(z)|2dA(z) ≤ ‖ϕ‖2H∞‖f‖2A2 .

Hence,
M(A2(D)) = H∞(D).

Although the multiplier algebra of the Bergman space contains a lot of non
trivial elements, it turns out that they are not enough for the space to have the
Nevanlinna-Pick property.

Suppose we want to solve the scalar interpolation problem for two points, so
take for convenience z1 = w1 = 0, then the Pick matrix for the bergman kernel
is positive semidefinite if and only if

|w2| ≤ |z2|
√

2− |z2|2

But we know that analytic functions in the unit ball of H∞ reduce hyperbolic
distance hence if such an interpolating function ϕ where to exist one should have

|w2| = |ϕ(z2)| ≤ |z2|

, which cleary it is not the case for all admissible choices of w2.
It is a highly non trivial theorem that the Hardy space has the Complete

Nevanlinna Pick Property. For a proof see for example [ref.]
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4 Basics in Basis Theory in Hilbert Spaces

It will be useful for later to establish some terminology and present some basic
results from the theory of bases in Hilbert spaces.

What are we going to talk about in this chapter makes sense in an arbitrary
Hilbert space H, even if a kernel structure is not specified.

Suppose we have a sequence of vectors {xi} ∈ H. For most of what is coming
we assume that at least our sequence is topologically free, i.e.

xi 6∈ ∨{xj : j 6= i}.

Such systems always have what is called a dual system, that is a sequence
{yi}, with the property

〈xi, yj〉H = δij ,∀i, j ∈ N

In fact there exists a minimal dual system in the sense that the norms ‖yi‖
are the smallest possible.

Exercise 4.1. Prove that if {yi} is the minimal dual system of {xi},

∨{xi} = ∨{yi}.

We can formally define an analysis operator associated to the sequence which
maps an element h ∈ H to the sequence of its Fourier coefficients

F : H → `2, h 7→ {〈h, xi〉H}i.

The operator is densely defined on H because H = ∨{yi} ⊕ (∨{xi})⊥.
The (formal) adjoint of this operator is called synthesis operator and is given

by

F∗ : `2 → H, {αi} 7→
∑
i

αixi.

This is in general only densely defined. Note also that both operators are closed.

Definition 4.1. A sequence such that the associated synthesis operator is bounded
it is called Bessel sequence. If F∗ is also bounded below it is called Riesz sequence

The matrix of the operator G := FF∗ with respect to the standard orthonor-
mal basis of `2 is called the Grammian of the sequence. More explicitly,

Gij = 〈xi, xj〉H.

We therefore have the following proposition.

Proposition 4.1. For a topologically free system the following are equivalent.

• {xi} is a Bessel system.

• G is a bounded matrix in `2.
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• The range of F is contained in `2.

The proof of the following proposition is only slightly less trivial.

Proposition 4.2. For a topologically free system the following are equivalent.

• The minimal dual system is a Bessel sequence.

• G is bounded below in `2.

• The range of F contains `2.

Proof. Let {xi} a topologically free system, and {yi} its minimal dual. First
we prove the equivalence of the first two elements in the list. Suppose {yi} is
Bessel,

‖
N∑
i=1

αixi‖2 ≥ sup
{∣∣∣〈∑αixi,

∑
βjyj〉H

∣∣∣ : ‖
∑

βjyj‖ ≤ 1
}

≥ sup
{∣∣∣∑αiβi

∣∣∣ :
(∑

|bi|2
)1/2

≤ ‖G∂‖−1
}

=
1

‖G∂‖

N∑
i=1

|αi|2.

Note that this direction holds true even if {yi} is just a dual system of {xi}.
To see the other direction, the argument is the same with the role of xi and yi
reversed noticing that we can reverse the inequalities because of minimality and
the bounded below hypothesis.

Now we prove the equivalence of (1) and (3). Let {αi} ∈ `2, then

F
(∑

αiyi

)
= {αi}.

In the other direction, the open mapping principle allow us to construct a
bounded right inverse of F which maps ei t yi.

FR = Id`2 , R : `2 → ∨{xi} ⊆cl H.

In fact R = F∗∂ . It follows that the Grammian of {yi} is bounded and hence
they are a Bessel system.

One of the most extraordinary theorems in the theory of bases in Hilbert
spaces is Feichtinger’s Theorem, a consequence of the solution of the Kadison-
Singer problem, solved by Marcus-Spielman-Srivastava. We present it here with-
out a proof.

Theorem 4.1 (Feichtinger’s Theorem). Any Bessel sequence {xi} is a finite
union of Riesz sequence.
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5 Interpolating Sequences

Let now H a RKHS,

Definition 5.1. Let {xi} a sequence of points in X and gi :=
kxi
‖kxi‖

.

• We say that {xi} is Universally Interpolating (UI), if {gi} is a Riesz sys-
tem in H,

• Simply Interpolating (SI) if the minimal dual system of {gi} is Bessel,

• Carleson sequence (C) if the system {gi} is a Bessel system.

• Weakly Separated (WS) if it separated with respect to the Gleason metric

dH(xi, xj) :=
√

1− |〈gi, gj〉H|2.

Exercise 5.1. Prove that the Gleason metric is actually a metric.

Our next goal is to prove the following theorem

Theorem 5.1. [Marshall, Sundberg, Aleman, McCarthy, Hartz] If H is a
RKHS with the CNP property then a sequence {xi} ⊆ X is Universally In-
terpolating if and only if it is Weakly Separated and Carleson.

Proof. First we prove the direct implication. For the converse we will need some
more preparation. That a (UI) sequence is (C) is evident by definition, to see
the (WS) part just let λ ∈ C, |λ| = 1, by the Riesz basis property property for
i 6= j

ε ≤ ‖gi − λgj‖2 = 2(1− λ〈gi, gj〉H).

Taking infimum over all unimodular λ,

ε

2
≤ 1− |〈gi, gj〉H|.

The following theorem is of fundamental importance and justifies the time
we spent on tensor multipliers.

Theorem 5.2. [Agler, McCarthy, Theorem 9.46] Let k a CNP kernel and {xi}
a sequence of points, let gi the corresponding normalized kernel vectors and let
ei be the standard orthonormal basis of `2.

(a) {xi} is Simply Interpolating if and only if there exists a multiplier Ψ ∈
M(H⊗ `2,H) such that

Ψ(xi) = ei =
(
0 · · · 0 1 0 · · ·

)
.
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Proof. If the sequence is Simple Interpolating by the discussion in the previous
paragraph the associated Grammian G is bounded below, or equivalently there
exists ε > 0 such that

G− εI ≥ 0.

Or to state it in a Pick matrix form,

[(1− εei · e∗j )k(xi, xj)] ≥ 0.

Hence by the row Pick property there exists a multiplier Φ̃ ∈ M(H ⊗ `2,H)

of norm at most one, such that Ψ̃(xi) =
√
εei. Then Ψ := Ψ̃√

ε
is the desired

multiplier.
The converse follows by the same argument, because the existence of such a

multiplier implies the positivity of the Pick matrix.

Next theorem is an intermediate step in the proof, although of independent
interest.

Theorem 5.3. Let k a kernel with the two point scalar pick property and a
{xi} Carleson and Weakly Separated sequence. Then there exist a sequence of
multipliers θi ∈M1(H) such that

θi(xj) = εδij ,

for some ε > 0.

Proof. Fix an i ∈ N and let φij ∈M1(H) such that,

φij(xi) = 0, φij(xj) = dH(xi, xj).

Such a matrix exists by positivity of the correspondent Pick matrix and the two
point scalar pick property. The consider the multiplier θi ∈M1(H)

θi :=
∏
j 6=i

φij .

(Check that the infinite product converges to a multiplier). Then θi vanishes
on all points except xj where it takes the value

θi(xi) =
∏
j 6=i

dH(xi, xj).

Each factor is bounded away from zero by the Weak Separation condition, and
also∑

j 6=i

(1− dH(xi, xj)) ≤ 2
∑
j 6=i

(1− dH(xi, xj)
2) =

∑
j 6=i

|〈gi, gj〉H|2 ≤ ‖G‖2`2 .

Hence infi∈N |θi(zi)| > 0.
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Proof of converse in Theorem 5.1. Let {xi} a sequence which is Weakly Sepa-
rated and Carleson. By definition the system {gi} of normalized reproducing
kernels forms a Bessel sequence, therefore by Feichtinger’s Theorem it can be
written as a finite union of Riesz systems or equivalently our sequence is a finite
union of Universally Interpolating sequences. Therefore the claim will be proved
if we show that the union of two (UI) sequences is (UI) if it is (WS).

We shall use the following notation. If {ai}, {bi} are two infinite sequence
we write {ai} ∧ {bi} for the sequence

a1, b1, a2, b2, a3, . . .

Let {x(k)
i }, k = 1, 2 be (UI) and {xi} := {x(1)

i } ∧ {x
(2)
i } be (WS).

The union is also a Carleson sequence therefore there exist θi as in Theorem
5.3. Finally there exist multipliers Ψ(1),Ψ(2) ∈ M(H ⊗ `2,H) as in Theorem
5.2. Define the Ψ by

Ψ(x) :=
(
Ψ(1)(x) ∧Ψ(2)(x)

)

θ1(x) 0 0 . . .

0 θ2(x) 0
0 0 θ3(x) . . .
...

...
. . .

 . (5)

In fact Ψ ∈ M(H ⊗ `2,H) and Ψ(xi) = ei. Hence, again by Theorem 5.2
the sequence is Universally Interpolating.
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